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Upstream influence of a dipole in rotating flow 
By JOHN W.MILES 

Institute of Geophysics and Planetary Physics, University of California, La Jolla 

(Received 8 November 1971) 

McIntyre (1 972) has demonstrated that transient nonlinear self-interactions 
among the lee waves downstream of an obstacle in an axisymmetric, inviscid, 
rotating flow yield a columnar disturbance that moves upstream of the obstacle. 
This disturbance is calculated for a dipole, the moment of which increases slowly 
from 0 to a3, in a tube of radius R as a function of 6 = a/R and K = 21C1R/U 
(a  and U being angular and axial velocities in basic flow). The asymptotic limit 
64 0 with 1 = K6 fixed, which is relevant for typical laboratory configurations 
and for the abstraction of unbounded flow, yields: (a )  an upstream velocity with 
an axial peak of uo = O-Ollk5SU and a first zero at a radius of 2.8UlQ; (b)  an 
upstream energy flux of roughly - $7rpU2R2uo; (c )  an upstream impulse flux of 
0.200 (0 = wave drag on dipole). The results (a) and (b) ,  albeit based on the 
hypothesis of small disturbances, suggest that nonlinear self-interactions among 
the lee waves could be responsible for upstream blocking. The results (a) and 
(c )  imply that, although upstream influence is absent from an unbounded (6 = 0) 
flow in the sense that the axial velocity vanishes like 6, it is present in the sense 
that approximately one-fifth of the impulse flux associated with the wave drag 
appears in the upstream flow. 

1. Introduction 
Benjamin (1970) has argued, and McIntyre (1972) has demonstrated, that 

transient nonlinear interactions in an inviscid, unseparated, axisymmetric, 
rotating flow downstream of an obstacle in a cylindrical tube yield columnar 
disturbances (I use columnar disturbance in the same sense as McIntyre) that move 
upstream of the obstacle and negate Long’s (1953) hypothesis of no upstream 
influence (which implies a linear equation for the stream function) for distur- 
bances of finite amplitude. On the other hand, McIntyre has shown that these 
nonlinear interactions are evanescent in an (externally) unbounded rotating 
flow, in which case Long’s hypothesis remains valid. Introducing 

R = BQU/U K6 (1 .1)  
and 6 = a/R, (1.2) 
where R and U are the angular and axial velocities in the basic flow, a is a charac- 
teristic lateral radius of the obstacle, and R is the radius of the tube, we may 
state that Long’s hypothesis remains valid? in either of the limits 

(i) 840 with K fixed, 
(ii) 64 0 with R fixed, or 

t This validity may not be uniform as t + co; see McIntyre (1972, 7) .  
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corresponding to either (i) infinitesimal disturbances in bounded flow or (ii) finite 
disturbances in unbounded flow. Of these two limits, the latter appears to be the 
more relevant to typical laboratory experiments (e.g., Maxworthy 1970), in 
which S is small and K is large. 

The hypothesis of unseparated flow? permits the obstacle to be described by 
an axial distribution of dipoles provided that the observed upstream-separation 
bubble is incorporated into the theoretical model by regarding it as part of the 
obstacle (Miles 1969, 1970a; Maxworthy 1970). The determination of this distri- 
bution for a prescribed obstacle generally requires the solution of an integral 
equation (Miles 1969) and involves additional nonlinear effects through the 
boundary conditions (the latter effects are essentially local and are distinct from 
nonlinear effects in the far field that give rise to the columnar disturbances; 
McIntyre gives a fuller discussion of this point); however, the far field of the 
obstacle may be represented by a dipole singularity for moderate R (say R 6 2). 
The strength of this singularity, designated as the dipole moment = R%, is pro- 
portional to a21 for a slender body of lateral radius a and length I and to a3 for a 
fat body of lateral radius a ;  in particular, E I' (a/.R)3 for a sphere of radius a as 
A$O. 

Against this background, we consider an axisymmetric inviscid flow that is 
initially (t  < 0 )  uniform, with axial velocity U and angular velocity Q, and give 
an  asymptotic (t --f 00) description of the columnar disturbances induced by a 
dipole, the moment of which increases uniformly from 0 to R3e on the time scale 
R/( Uc), where boths and i~ are small. This description (in $9 2 and 3) is essentially 
similar to that given by McIntyre (1972) for an impulsively started body, and we 
therefore omit its detailed derivation (although this derivation differs signifi- 
cantly from that given by McIntyre). We then go on (in $8 4 and 5 )  to develop 
asymptotic approximations in the limit (ii). These results go considerably beyond 
those given by McIntyre [although they rest directly on his basic work, as well as 
the earlier work of Benja,min (1970)], and we therefore develop them in more 
detail. 

Formulation 
Choosing R and U as scales of length and velocity, we pose the velocity and 
vorticity vectors in the forms 

v = U (  1,0,  QKr) + - $z, K y )  (1.3a) 

v x v = 2Q( 1,0 ,0)  + 2Qr-1(7*, - yz, K a ) ,  (1.3b) 

t The complete theoretical description of separated flow poses an intractable problem; 
however, an investigation of viscous effects in an unbounded fluid suggests that such a 
flow may be described asymptotically by an oseenlet singularity. The inner limit, 
E 2nv/U2 J. 0 with co-ordinates fixed, of the resulting solution yields an upstream 
velocity m t h  the same radial distribution as the dipole singularity and an amplitude 
proportional to the viscous drag (Miles 1970b). Comparison with Maxworthy's (1970) 
experiments suggests that this amplitude is small for moderate values of k, 6 Q 1, and 
E < 1, but the possibility remains that the columnar disturbance associated with viscous 
separation could be comparable with, or even dominate, that associated with nonlinear 
interact ions. 

and 
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FIGURE 1. Sketch of dipole in rotating flow. 

where the triad (-, -, -) comprises the axial, radial, and azimuthal components of 
a vector, 2 and r are dimensionless cylindrical co-ordinates referred to the length 
scale R, URz$ is the perturbation stream function, KURy is the azimuthal 
circulation relative to the basic flow, K2Uw is the radial moment of the azimuthal 
vorticity (subsequently to be related to the axial impulse), and K is defined by 
(1.1). We also introduce the column matrices 

(1.4a, b )  

and note that Long’s hypothesis would imply a solution of the form + = I@. The 
resulting equations of motion then may be posed in the matrix form (cf. Goldstein 
1938, p. 115) 

+@, r ,  t )  = {$, Y, w}, I = {1 ,1 ,1}  

(1.5) 

where 

is a column matrix that comprises the nonlinear terms. The initial condition is 

+(x, r ,  0) = 0. 
The boundary conditions are 

$(x , r , t )  + -ed(x)f(t), $7 + 0 (rJ.o), ( I .Sa,b)  

( f .Sc,  d )  

where d ( x )  is Dirac’s delta function, R3s is the dipole moment (see above), and 
f ( t )  is a slowly varying funcbion that satisfies 

f ( t )  = 0 (t < O ) ,  f ( t )  N 1 + 0(1/ t )  (t + m), (1 .9a ,  b )  

a,$(., 1, t )  = 0, $( -t 03, r ,  t )  = 0, 

and / ( t )  = O(a) (1.9c) 
uniformly with respect to t .  

2. First approximation 
The solution of (1 5)-( 1 .S) may be developed in powers of E ,  starting from the 

first approximation, in which Jf = O(e2) is neglected on the right-hand side of 
(1.5), and proceeding by iteration. Given the nth approximation to Jf, the 
(n+ 1)th approximation to + may be obtained with the aid of Fourier, finite- 
Hankel, and Laplace transforms with respect to x, r ,  and t. The details of the 

24-2 
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solution depend on the order in which the Fourier and Laplace transforms are 
inverted (the inversion of the finite-Hankel transform leads directly to a Fourier- 
Bessel series independently of the order of the Fourier and Laplace inversions), 
and some type of asymptotic approximation is essential for the display of explicit 
results (which, in the present context, are required only for large 1x1). 

McIntyre constructs the first (linearized) approximation by first inverting the 
Laplace transform exactly and then considering the asymptotic properties of the 
Fourier integral as 1x1 + GO. An alternative procedure, which is more economical 
but also more heuristic, is to invoke the hypotheses (1.9b, c), which imply that 
the Laplace-transform parameter s is O(a),  determine the poles of the Fourier 
transform through O(a), and then invert the Fourier and Laplace transforms in 
that order. This latter procedure yields the first approximation in the form 

1 
( 2 . l b )  

(2 .2 )  

P N  K PN+1, (2-3) 

where the Pn are determined by 

Jl(P,) = 0 (0 < P1 < Pz < ...), 
AT, the number of lee-wave modes, is determined by 

the reciprocal wave speeds are given by 

p, = K 2 / ( K 2 - P i )  f I/G,, pk*) = PnIK$PnI-l- I/c~*), ( 2 . 4 ~ , b )  

YLw) represents a lee wave with the axial wavenumber 

K, = (IP-p:)+ (2 .5 )  

that advances downstream with the wave-front speed G,, ‘4;) represents an 
exponentially decaying disturbance that extends indefinitely downstream (in 
the present approximation) and advances with the wave-front speed l/lcnl in the 
upstream direction, Yk+) represents a transient that is evanescent as t -+ GO and 
advances downstream with the wave-front speed ck+), and Yk-) represents a 
similar transient that advances either upstream (P < K )  or downstream (P > K )  
with the wave-front speed ck-). 

The explicit determination of the Y, is straightforward; however, McIntyre’s 
analysis implies that, under (1.9), only the lee-wave component of +(l), 

contributes to the next term in the development, say +@), at O(e2). Moreover, if 
+(w) is resolved into and +(w)- I$((u’), terms that are O(a) are significant only 
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in the latter component (since a solution of the form I$ renders Jlr = 0). Carrying 
out the solution at  this approximation, we obtain 

+kw) = W(An[I f ( t -pnx)+ iK; l {O ,  1 ,  2}f(t-pnx)]exp [ i (~~x--&r) ] ) ,  (2 .7 )  

where A ,  = 2sp,(KnJ;,)-l (2.8) 

Jon = Jo(Pn), (2 .9 )  

is the amplitude of the nth lee-wave mode, 

and the error factor is 1 +O(v), both for the term proportional to I and, inde- 
pendently, for the term proportional to (0, 1,2>. We note that An is complex for a 
dipole distribution; see (4 .14)  et seq. 

We emphasize that neither (2 .1 )  nor (2.6) provides a detailed description of the 
wave fronts, whereas McIntyre (1972) does provide such a description. 

3. Second approximation 
Substituting (2.6) into (1 .6 )  and retaining only the slowly changing (in both x 

and t )  columnar disturbances that arise from the quadratic interactions between 
the lee-wave components of like index, we obtain 

N 

1 
Jlr = f l ( x ) r X  IAn12Pn{0, M P n r ) ,  Ji(Pnr)}Jl(PnT) a t f2 ( ( t -PnX) -  (3 .1 )  

The remaining contributions to Jtr of the first approximation, equation (2. i), 
contribute to  +(2) only at O((re2). 

Substituting (3.1) into the right-hand side of (1.5) and then repeating the 
integral-transform solution of ( 1  .5)-(1.9),  we obtain the second approximation 
(which is equivalent to that given by McIntyre in his appendix A) : 

N 

m = l  
where +(2) = r C 

N 
= r  C 

m = l  n = l  

(3.4b) 

(3 .4c)  

and the reciprocal wave speeds are given by (2 .4 ) .  McIntyre (1972) tabulates a,, 
and p,, for m, n = l( 1) 6. We note that 

P nn = - 2a,, = J ? ( P , ~ )  dr (3 .5)  
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and that asymptotic approximations for &, p, $ 1 may be obtained by replacing 
the upper limits of the integrals in (3.4) by 00 and invoking the known results for 
the infinite integrals (Watson 1945, 8 13.46). Invoking also 

Pn N n‘rr, Jon N ( - )nr1(2/n‘ )3,  n’ = n + t, (3.6) 
we obtain 

Fmn N - [I - &(n’/m’)2]-1am, N [(m’/n’)Z- &I-* (m’ > in’), (3.7) 

which are within 1 yo of the exact results for m, n > 6 ;  both Plan and amn are 
0(1/m’) if m’ < in’. 

We remark that (3.3a) is indeterminate if ,urn = ,@, which can occur only if 
Pn > K and implies coalescence of the corresponding fronts. Resolving the 
indeterminacy, we obtain 

ALA[f2(t --Iu.,x) - f 2 ( t    pi-)^)] 

(3.8) 

Letting t -+ co in (3.3) and invoking (1.9b), we find that the disturbances in 
0 < x < &It mutually cancel if Pn > K ,  whilst those in 0 < x < c,t yield a 
disturbance identical with that in x < 0 if P, < K ,  such that the columnar com- 
ponent of 3, is given asymptotically by 

N N  

m = l  n= l  
x c &-2J1(Bnr) ( t  -+ 0O,IxI fixed). (3.9) +(2) N p 

We note, however, that (3.9) is not uniformly valid as x -+ 00 if PAPn - K 3  is small 
in consequence of the x factor in (3.8). 

4. Upstream influence 

Substituting the 7,h component of (3.9) into (1.3a), we obtain 
The total disturbance in the ordered limit t -+ co, x -+ -co is given by (3.9). 

N 

1 
v N v(0) - s2u z @,(Jo(Pnr), 0, J,(P,?“)) (t  -+ co, x -+ - co), (4.1) 

where v(O) is the velocity in the ba.sic flow, as given by the first term on the right- 
hand side of (1.3a), and 

There is no net mass flux associated with 3,@), as is already implicit in the 
hypothesis of a dipole representation of a body; however, there is a net flux of 
both energy and impulse. The perturbation energy per unit length is given by 

(4.3) 
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Substituting ( 1 . 3 4  into (4.3) and invoking ( 1 . 8 ~ )  to eliminate the integral of the 
first-order term in @r, we obtain 

aE/& = npU2R3 [K2y  + r2(@; + @: + K2y2)]  rdr. so' (4.4) 

Conservation of angular momentum implies that the volume integral of K2y 
throughout the entire tube (0 6 r < 1, -00 < x < 00) must vanish identically. 
A detailed calculation co&ms this fact within the present approximation and 
reveals that the integrated angular momentum, and hence energy, in x > c,t 
increases at an asymptotically constant rate. It follows that the steady-state 
solution is inadequate for a complete discussion of the energy balance in the flow. 
This caveat is important in interpreting the subsequent results.? 

Substituting the y component of (3 .3b)  into (4.4), carrying out the integral 
over the upstream domain according to 

rn rt 

differentiating with respect to real time, 

T = Rt/U,  (4.6) 

letting t -+ 00, and invoking (1.9b), we obtain the rate of change of the upstream 
perturbation energy, say E(-), within 1 + O(e2) in the form 

N 

1 
dE(-)/dT N 2821?OKz @s(K-p,)p&2Jo, G hl?,8(-) ( t  + a), (4.7) 

where l?, = &pVR2 (4.8) 

is a measure of the energy flux in the basic flow. 
The total perturbation energy is dominated by the lee-wave energy, say E(w), 

in consequence of the aforementioned fact that the volume integral of y vanishes 
identically. Substituting @ and y from (2.7) into (4.4) and proceeding as above, 
we obtain 

N 

1 
dE('")ldT = U D  N 4 ~ ~ . @ ~  C (/3,/Jo,)2 E S ~ . @ ~ & ( W )  (t + CO), (4.9) 

where D is the wave drag. 
Benjamin (1970, $ 3 )  has shown that 

D = dP/dT, (4.10) 

where P is the axial component of the impulse. In  his notation, only (Pv), con- 
tributes to  dPldT (there is a contribution to P from the surface integral over the 
body, Benjamin's equation (3.14), but this is asymptotically constant); in the 
present notation, Benjamin's equation (3.15) yields the impulse density 

dP/dV = -*pUK2a,  (4.11) 

t Dr McIntyre has remarked (in a private communication) that the difficulties associated 
with the energy balance are at least partially a consequence of the choice of a fixed, rather 
than a rotating, reference frame. 



376 J .  W .  Miles 

where a is defined by (1 .3b)  and (1.4a). Benjamin argues from (4.10) that 
upstream influence is a necessary concomitant of wave drag; but, as McIntyre 
(1972) points out, the upstream contribution to P may vanish identically, as in 
two-dimensional stratified flow if only the dominant mode is propagated. It 
therefore is of some interest to calculate the upstream component of P, say P(-), 
explicitly. Proceeding as in the calculation of E(-), we obtain 

N 

1 
dP(-)/dT N - ~s'(B,/U) 2 '?Ln(K-/3,)P;lJon E ~ 2 ( B , / V )  Y(-) 

The total-impulse parameter corresponding to F-) is 9' 3 F(w). 

mode is propagated) : 

(t  -+ 00). (4.12) 

The preceding results simplify as follows if N = 1 (so that only the dominant 

'?Ll = 98.3K1(1+K,+K~)-l ( K ,  = K/P, = 0*261K), (4.13a) 

= 362, r P  = - 0.806K1(K, - 1) %,, @-) = 0-S06(Kl - 1) '?L1. 
(4.13b,c,d) 

Axial distribution of dipoles 

The asymptotic results (t  + 00) may be generalized to a dipole distribution by 
redefining d(z)  in ( 1 . 8 ~ ~ )  as the dipole density, normalized t o  unit moment. It 
then is necessary only to insert the distribution factor 

on the right-hand side of (2.8), and to insert 19m\z, Ignl2, and 19112 in the right- 
hand sides of (4.2), (4.9), and (4.13a, b), respectively. The approximation of a 
finite obstacle by a dipole implies gn = 1 for all n. A necessary condition for this 
approximation is 

k e 2Ql/U < 1, (4.15) 

where 1 is the length of the obstacle. 

5. Numerical results 
The following results are based on tabulated values of /In and Jon and numerical 

integration of amn and /3,, for m, n < 6 and on (3.6) and (3.7) for m, n > 7 .  The 
various parameters exhibit a staircase-like growth with K ,  with finite jumps at 
K = /3, and slow monotonic variations in absolute value as K increases from 
/ I rn+  to Pm+,- (see figures 3 and 5). The results for N = I, which are given by 
(4.13) and are on a significantly smaller scale than those for N > 2, arc plotted in 
figure 2. The minima and maxima of the '?LYL for N = 1(1)12 are tabulated in 
table I (intermediate values may be determined by linear interpolation on a 
log-log graph). Calculations up to N = 20 suggest that '?Ln > 0 for n < M ( P )  and 
an < 0 for n > M ,  where M increases with N (table 1 yields M = N - 1 for 
2 < N < 9). 
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FIGURE 2. The parameters 4Y1, &(-), and @(-) for N = 1, as given 

by (4.f 3) ; B = cYW) = 362. 

The relative axial velocity in the direction of motion of the dipole, as deter- 

( 5 . 1 ~ )  
mined from (4.1), is N 

~ ( r )  = c2U Z @nJO(Pnr), 
1 

N 

1 
which reduces to u(0) = uo = s2uz qn = €=u% (5.lb) 

on the axis. The parameter % is plotted in figure 3. The velocity profile u/uo is 
plotted as a function of the dimensionless radius Kr (which is independent of R) 
in figure 4 for K = ( N + $ ) r ,  N = 1 ,2 ,4 ,8 .  The profiles for N = 2, 4, 8 are 
remarkably similar for Kr < 2n and are quite flat for small K r ;  

1 - 1 ~ / ~ ~ 1  < 0.01 (0.07) 

for Kr < 1.6 (2.4). The profile for N = 16 (not plotted) lies slightly below that 
for N = 8 in Kr  < 5.6 but has approximately the same zero a t  Kr = 5.6. These 
relatively blunt profiles contrast with the axial-velocity profile for a dipole in an 
unbounded rotating flow, for which (Miles 1969) 

u/uo = Jo(Kr), uo = 0(1/1~1)  (X + a), (5.2u, b )  

The energy-flux and impulse parameters gW), &(-), and fl-) are plotted in 
and u/uo decreases to 0.5 at Kr = 1.6 and to 0 at Kr = 2.4. 

figures 5 and 6. 
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FIGURE 5 .  The upstream- and lee-wave-energy parameters, as defined by (4.7) and 
(4.9). The asymptotic extrapolations of ( 5 . 3 b ,  c) are given by the dashed lines. 

Asymptotic approximations 

Asymptotic approximations for large K may be obtained by invoking the 
approximations (3.6) and(3.7)in (4.2), (4.7), (4.9), and (4.12) andthenconverting 
the summations to integra1s.t Only the integral for €(w) is tractable; however, the 
integrals for a, &), and gc-1 do yield heuristic extrapolations up to constants of 
proportionality. Evaluating these constants through numerical extrapolation 
of the calculated results for N = 10( 1)40, we obtain 

7 This conversion, from summation over a continuous spectrum to integration over a 
continuous spectrum, is mathematically delicate in consequence of the singularities at  
K = Pn; howevor, the difficulties oan be overcome and do not appear to merit a detailed 
discussion in the present context. 
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FIGURE 6. The upstream-impulse parameter, as defined by (4.12), and the total-impulse 
parameter 9 8(w). The asymptotic extrapolations of (5.3b, d )  are given by the dashed 
lines. 

[The convergence of the series for the K-scaled parameters -e.g. @/K5 -as N -+ 00 

is painfully slow and resembles that for similar problems (in diffraction theory) 
in which a discrete spectrum tends to a continuous spectrum. The numerical 
coefficients in (5.3a, c, d)  were determined by graphical extrapolation of plots of 
the K-scaled parameters versus 1/N.]  We remark that the significance of the 
divergence of €(-)/&@) N - 0-064K as K +- 00 is limited by the divergence of the 
downstream perturbation energy as t .+ 00 [see discussion following (4.4)]. 

We use these last approximations to establish limiting results for unbounded 
rotating flow past an obstacle of equivalent radius a, defined such that (see remarks 
in 3 1 above) 

Introducing Afrom (l.l), we obtain the following results in the asymptotic limit 
(ii), 840 with R fixed (or, equivalently, K + co with R fixed). 

E = (a/R)3 = S3. (5.4) 

uo/u 0.011~5s, (5 .5 )  
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dE(-)/dT N - 0*032k5620 (5.6a) 

and 

We emphasize that the significance of these approximations for finite obstacles 
is limited by the approximation an = 1, which implies the restriction (4.15). 
Letting k+ 00 in (4.14), we obtain an = O ( P ) ,  which implies a corresponding 
reduction in the order of magnitude of each of (5.5)-(5.7) for A -+ 00. 

Considering a sphere of $in. diameter in a tube of 12in. diameter, as in 
Maxworthy’s (1970) experiments, we obtain uo/u = 0.01, 0.02, and 0.06 at 
A = 1-74, 2-16, and 2.61 (the three values for which Maxworthy reports u, as 
a function of axial distance upstream of the sphere). These values are outside 
the range of Maxworthy’s data but are much smaller than the observed velocities 
in 5 < 1xI/a < 20. On the other hand, the observed velocities do match the 
theoretical calculations based on Long’s hypothesis and an unbounded flow after 
fitting an ellipsoid to the observed upstream-separation bubble (Miles 1969).t 
Moreover, the first zero in the observed profiles is at Kr = 2.5-2.6, which is close 
to the theoretical value of Kr = 2.4 for unbounded inviscid flow and far from the 
value of Kr = 5 5 - 5 7  implied by the multi-mode profiles of figure 4 (see above). 

This last comparison suggests that the columnar disturbance induced by a 
small obstacle in a large tube (S< 1)  is negligible for moderate values of L 
Nevertheless, (5.5) does imply that uo/U ultimately increases sharply with 
L (e.g., u,/U = + and dE(-)dT + - 8, for 6 = and k = 3.21). The perturbation 
calculation on which (5.5) and (5.6) are based and the approximation Bn + 1 
then break down, but the results do suggest that the columnar disturbance 
induced by even a small obstacle could be responsible for blocking. 

Finally, we infer from (5.5) and (5.8) that: on the one hand, upstream influence 
is absent in an unbounded flow in the sense (and this is the sense of Long’s 
hypothesis and of $6.2  in McIntyre’s paper) that the axial velocity vanishes 
like 6; on the other hand, upstream influence exerts a finite effect in an unbounded 
flow in the sense (and this is essentially Benjamin’s sense) that approximately 
one-fifth of the impulse flux associated with the wave drag appears in the 
upstream flow. 

This work was partially supported by the National Science Foundation, under 
Grant NSF-GA-10324, and by the Office of Naval Research, under Contract 
NOOO14-69-A-0200-6005. I am indebted to Michael E. McIntyre for providing 
me with pre-publication versions of his (1972) paper and for an extensive 
correspondence. 

the preceding values of uo /U,  but not by more than a factor of 2. 
t Basing the dipole strength on this ellipsoid, rather than on the actual sphere, increases 
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